Divergence of curl

Let \( \vec{A} \) be any vector.
Lets calculate curl of it: \[ \nabla \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k}\\ \frac{\partial}{ \partial x} & \frac{\partial}{ \partial y} & \frac{\partial}{ \partial z} \\ A_x & A_y & A_z \end{vmatrix} = \vec{i} ( \frac{ \partial A_z}{\partial y} - \frac{ \partial A_y}{\partial z} )+ \vec{j} ( \frac{ \partial A_x}{\partial z} - \frac{ \partial A_z}{\partial x} )+ \vec{k} ( \frac{ \partial A_y}{\partial x} - \frac{ \partial A_x}{\partial y} ) \] It is a vector. Lets calculate divergence of it: \[ \begin{multline} \nabla \cdot ( \nabla \times \vec{A}) = \\ \frac{\partial}{\partial x}(\frac{ \partial A_z}{\partial y} - \frac{ \partial A_y}{\partial z}) + \frac{\partial}{\partial y}(\frac{ \partial A_x}{\partial z} - \frac{ \partial A_z}{\partial x} ) + \frac{\partial}{\partial z}( \frac{ \partial A_y}{\partial x} - \frac{ \partial A_x}{\partial y} ) \end{multline} = \\ \frac{ \partial^2 A_z}{ \partial x \partial y} - \frac{ \partial^2 A_y}{ \partial x \partial z} + \frac{ \partial^2 A_x}{ \partial y \partial z} - \frac{ \partial^2 A_z}{ \partial y \partial x} + \frac{ \partial^2 A_y}{ \partial z \partial x} - \frac{ \partial^2 A_x}{ \partial z \partial y} \tag{1} \] It is known that \[ \frac{ \partial^2 f}{ \partial x \partial y} = \frac{ \partial^2 f}{ \partial y \partial x} \] and (1) estimates to 0 for any \( \vec{A} \).